Transformer/Self-attention Modeling in Computer Vision Towards Universal Models for CV/NLP

Yue Cao

Microsoft Research Asia

Oct. 9th, 2021 @ VALSE

Self Introduction

2010.8 - 2019.7 B.S. & Ph.D. in Tsinghua Univ.
2019.7 - now Senior Researcher in MSRA

6	-	Yue Cao 🖋		☑ 已关注	引用次数		
	apr	Senior Researcher, Microsoft Research Asia				总计	2016 年至今
	10	在 microsoft.com 的电子邮件经过验证 - <u>自以</u> Deep Learning Computer Vision			引用 h 指数 i10 指数	6093 25 29	6022 25 29
	标题 🕒	0 0 0	引用次数	女 年份			2200
	Learning Trai	nsferable Features with Deep Adaptation Networks	265	7 2015			1650
	International Co	nference on Machine Learning (ICML), 2015					- 1100
	GCNet: Non- Y Cao*, J Xu*, S arXiv preprint ar	local Networks Meet Squeeze-Excitation Networks and Beyond S Lin, F Wei, H Hu Xiv:1904.11492	461	1 2019	2015 2016	2017 2018 2010	3020, 2021 0
	Deep Hashin H Zhu, M Long, AAAI Conference	g Network for Efficient Similarity Retrieval J Wang, Y Cao e on Artificial Intelligence (AAAI), 2016	460	0 2016	司八开注词体		本王人动
	VI-bert: Pre-t	raining of generic visual-linguistic representations	406	6 2020	可公开切问的	山山似初致里	宣有主部
	W Su*, X Zhu*, International Co	Y Cao, B Li, L Lu, F Wei, J Dai nference on Learning Representations (ICLR)			2 篇文章		16 篇文章
	Deep Visual- Y Cao, M Long,	Semantic Quantization for Efficient Image Retrieval J Wang, S Liu	238	8 2017	无法查看的又拿 根据资金授权书	Ĩ	可宣看的又草
	IEEE Conference	e on Computer Vision and Pattern Recognition (CVPR), 2017					
	Swin transfor Z Liu, Y Lin, Y C International Co	mer: Hierarchical vision transformer using shifted windows ao, H Hu, Y Wei, Z Zhang, S Lin, B Guo nference on Computer Vision (ICCV), 2021 (Oral)	216	6 2021	合著作者		修改

Grand Unification Theory in Physics

• The Holy Grail in Physics

A Unification Story for Al

- The machine learning era
 - a paradigm unification: learning from historical data and make future predictions

A Unification Story for Al

- The machine learning era
 - a paradigm unification: learning from historical data and make future predictions
- The deep learning era
 - The unification of **architecture:** CNN, RNN, LSTM, Transformer

A Unification Story for Al

• What about models?

convolution

self-attention (Transformers)

graph networks

Model Evolution in NLP

Model Evolution in CV

1989 Convolution

Yann LeCun

LeNet, AlexNet, GoogleNet, VGG, ResNet ...

- Why?
 - Facilitate joint modeling of visual and textual signals
 - Modeling knowledge from both domains can be more deeply shared
 - Easy for industry to perform specific optimization
 - Pursuing universality, which is beautiful itself

Adapting <u>convolution layers</u> for NLP modeling

	• 2017.5	• 2019.2	• 2019.4			
Convolution based	ConvSeq2Seq FAIR	Dynamic Convolution FAIR	Deformable Convolution MSRA			
Transformer based Google Brain		dominate				

• Adapting self-attention/Transformer layers for CV modeling

Transformers

Figure 1: The Transformer - model architecture.

Ashish Vaswani et al, Attention is all you need, NeurIPS'2017

Self-Attention Unit

- Transforms the word/token input feature by encoding its relationship with other words/tokens
- A weighted average of Value, where the weight is the normalized inner product of Query and Key

Self-Attention Unit: An Example

Figure Credit: http://fuyw.top/NLP_02_QANet/

Transformer Block

- Major Component
 - Multi-head self-attention block
- Others are also necessary
 - Positional encoding
 - Layer Normalization
 - Skip connection
 - Feed Forward Networks

Figure 1: The Transformer - model architecture.

• Adapting self-attention/Transformer layers for CV modeling

Visual Recognition Paradigm

various recognition tasks

An Object Detection Example

pixel-to-pixel

object-to-pixel

object-to-object

Relationship Modeling of Basic Visual Elements

our study timeline

Object-to-Object Relation Modeling

None -----> Self-Attention

- Object Detection
 - RelationNet [CVPR'2018]
- Video Action Recognition
 - Videos as Space-Time Region Graphs [ECCV'2018]
- Multi-Object Tracking
 - Spatial-Temporal Relation Network [ICCV'2019]
- Video Object Detection
 - RDN [ICCV'2019]
 - MEGA [CVPR'2020]

Object-to-Object Relation Modeling

Object-to-Object Relation Modeling

It is much easier to detect the *glove* if we know there is a *baseball player*.

Object Relation Module

Han Hu*, Jiayuan Gu*, Zheng Zhang*, Jifeng Dai and Yichen Wei. *Relation Networks for Object Detection*. CVPR 2018

The First Fully End-to-End Object Detector

ResNeXt-101 + FPN + DCN 45.0 −−−−−→ 45.9

Han Hu*, Jiayuan Gu*, Zheng Zhang*, Jifeng Dai and Yichen Wei. *Relation Networks for Object Detection*. CVPR 2018

Multi-Object Tracking

Table 4. Tracking Performance on MOT16 benchmark dataset.													
Mode	Method	MOTA↑	MOTP↑	IDF↑	IDP↑	IDR↑	MT(%)↑	ML(%)↓	FP↓	FN↓	IDS↓	Frag↓	AR↓
	NOMT [11]	46.4	76.6	53.3	73.2	41.9	18.3	41.4	9,753	87,565	359	504	18.6
	MCjoint [23]	47.1	76.3	52.3	73.9	40.4	20.4	46.9	6,703	89,368	370	598	19.8
Offling	NLLMPa [30]	47.6	78.5	47.3	67.2	36.5	17.0	40.4	5,844	89,093	629	768	18.8
Onnie	FWT [18]	47.8	75.5	44.3	60.3	35	19.1	38.2	8,886	85,487	852	1,534	24.8
	GCRA [32]	48.2	77.5	48.6	69.1	37.4	12.9	41.1	5,104	88,586	821	1,117	21.9
	LMP [54]	48.8	79.0	51.3	71.1	40.1	18.2	40.1	6,654	86,245	481	595	17.8
	oICF [24]	43.2	74.3	49.3	73.3	37.2	11.3	48.5	6,651	96,515	381	1,404	31.8
	STAM [12]	46.0	74.9	50	71.5	38.5	14.6	43.6	6,895	91,117	473	1,422	29.3
Onlina	DMAN [63]	46.1	73.8	54.8	77.2	42.5	17.4	42.7	7,909	89,874	532	1,616	23.4
Online	AMIR [46]	47.2	75.8	46.3	68.9	34.8	14.0	41.6	2,681	92,856	774	1,675	22.9
	MOTDT [10]	47.6	74.8	50.9	69.2	40.3	15.2	38.3	9,253	85,431	792	1,858	23.5
	ours	48.5	73.7	53.9	72.8	42.8	17.0	34.9	9,038	84,178	747	2,919	15.4
		Table	e 5. Tracki	ing Per	forman	ce on M	IOT17 ber	nchmark da	ataset.				
Mode	Method	MOT	'A↑ MOT	'P↑ IDI	F↑ IDP	'↑ IDR′	` MT(%)↑	· ML(%)↓	FP↓	FN↓	IDS↓	Frag↓	AR↓
	IOU [5]	45.	5 76.9	9 39	.4 56.4	4 30.3	15.7	40.5	19,993	281,643	5,988	7,404	36.5
	MHT_DLSTM [[26] 47.	5 77.	5 51	.9 71.4	4 40.8	18.2	41.7	25,981	268,042	2,069	3,124	28.8
Offline	EDMT [8]	50.	0 77.	3 51	.3 67	41.5	21.6	36.3	32,279	247,297	2,264	3,260	24.0
Onnie	MHT_DAM [2	5] 50.	7 77.	5 47	.2 63.4	4 37.6	20.8	36.9	22,875	252,889	2,314	2,865	25.4
	jCC [22]	51.	2 75.9	9 54	.5 72.2	2 43.8	20.9	37	25,937	247,822	1,802	2,984	20.3
	FWT [18]	51.	3 77	47	.6 63.2	2 38.1	21.4	35.2	24,101	247,921	2,648	4,279	24.2
	PHD_GSDL [1	6] 48.	0 77.	2 49	.6 68.4	4 39	17.1	35.6	23,199	265,954	3,998	8,886	32.5
	AM_ADM [49	9] 48.	1 76.	7 52	.1 71.4	4 41	13.4	39.7	25,061	265,495	2,214	5,027	27.3
Onlina	DMAN [63]	48.	2 75.9	9 55	.7 75.	9 44	19.3	38.3	26,218	263,608	2,194	5,378	26.6
Omme	HAM_SADF [51] 48.	3 77.	2 51	.1 71.2	2 39.9	17.1	41.7	20,967	269,038	1,871	3,020	25.2
	MOTDT [10]	50.	9 76.	6 52	.7 70.4	4 42.1	17.5	35.7	24,069	250,768	2,474	5,317	23.1
	ours	50.	9 75.	6 56	.5 74.:	5 45.5	20.1	37.0	27,532	246,924	2,593	9,622	18.2

Jiarui Xu, Yue Cao, Zheng Zhang, Han Hu. Spatial-Temporal Relation Networks for Multi-Object Tracking. ICCV 2019

(d) the aggregation size of our proposed methods.

(📃 key frame 🔲 local frame 📃 global frame 😑 🔵 🌑 set of candidate boxes
	—— local semantic&localization connection —— global semantic connection
l	——— connection empowered by long range memory (global and local)

Methods	Backbone	mAP(%)		
FGFA [36]	ResNet-101	78.4		
ST-Lattice [4]	ResNet-101	79.6		
MANet [27]	ResNet-101	80.3		
D&T [9]	ResNet-101	80.2		
STSN [1]	ResNet-101+DCN	80.4		
STMN [31]	ResNet-101	80.5		
SELSA [30]	ResNet-101	80.5		
OGEMN [6]	ResNet-101+DCN	81.6		
RDN [7]	ResNet-101	83.8		
MEGA (ours)	ResNet-101	84.5		
FGFA [36]	Inception-ResNet	80.1		
D&T [9]	Inception-v4	82.0		
RDN [7]	ResNeXt-101	84.7		
MEGA (ours)	ResNeXt-101	85.4		

Table 2. Performance comparison with state-of-the-art video object detection models with post-processing methods (*e.g.* Seq-NMS, Tube Rescoring, BLR).

Yihong Chen, Yue Cao, Han Hu, Liwei Wang. Memory Enhanced Global-Local Aggregation for Video Object Detection. CVPR 2020

Object-to-Pixel Relation Modeling

RolAlign ----- Self-Attention

- Learn Region Features [ECCV'2018]
- Transformer Detector (DETR) [ECCV'2020]
- RelationNet++ [NeurIPS'2020]

Learnable Object-to-Pixel Relation

Geometric

Appearance

Jiayuan Gu et al. Learning Region Features for Object Detection. ECCV 2018

Pixel-to-Pixel Relation Modeling

Convolution Variants

Self-Attention

Usage

✓Complement convolution

✓ Replace convolution

Complement Convolution

• "Convolution is too local"

Figure credit: Van Den Oord et al.

Complement Convolution

• Non-Local Networks [Wang et al, CVPR'2018]

non-local block

The Degeneration Problem (2019)

- Expectation of Ideally Learnt Relation
 - Different queries affected by **different** key

Query

Key

Yue Cao, Jiarui Xu et al. GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond. ICCVW'2019, TPAMI'2020

The Degeneration Problem (2019)

- What does the Self-Attention Learn?
 - Different queries affected by the **same** keys

Key

Yue Cao, Jiarui Xu et al. GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond. ICCVW'2019, TPAMI'2020

Visualizations on Real Tasks

- 🕂 indicates the query point
- The activation map for different queries are similar
- The self-attention model degenerates to a unary model

Object Detection

Semantic Segmentation

[GCNet, ICCVW'2019 & TPAMI'2020] https://arxiv.org/pdf/1904.11492.pdf

GCNet: Explicitly Use the Same Attention Map

COCO Object Detection Results

• Baseline: Mask R-CNN + ResNet-50 + FPN

method	AP (bbox)	AP (mask)	#param	FLOPs
baseline	37.2	33.8	44.4M	279.4G
NL-Net	38.0	34.7	46.5M	288.7G
SE-Net	38.2	34.7	46.9M	279.5G
GC-Net (1 layer)	38.1	34.9	44.5M	279.4G
GC-Net (all layers)	39.4	35.7	46.9M	279.6G

+2.2 mAP +1.9 mAP

with little computation and model size overhead!

Yue Cao, Jiarui Xu et al. GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond. ICCVW'2019, TPAMI 2020
DNL: How to Effectively Model Pairwise Relationship?

• Disentangled design (ECCV'2020)

Minghao Yin, Zhuliang Yao, Yue Cao et al. Disentangled Non-Local Neural Networks. ECCV'2020

DNL: How to Effectively Model Pairwise?

• Disentangled design (ECCV'2020)

method	backbone	mloU(%)					
Deeplab v3	ResNet101	81.3					
OCNet	ResNet101	81.7					
Self-Attention	ResNet101	80.8					
Ours	ResNet101	82.0					
HRNet	HRNetV2-W48	81.9					
Self-Attention	HRNetV2-W48	82.5					
Ours	HRNetV2-W48	83.0					
Citvscapes							

method	backbone	mloU(%)
ANN	ResNet101	52.8
EMANet	ResNet101	53,1
Self-Attention	ResNet101	50.3
Ours	ResNet101	53.7
HRNet v2	HRNetV2-W48	54.0
Self-Attention	HRNetV2-W48	54.2
Ours	HRNetV2-W48	55.3
	ADE20K	

method	mAP ^{bbox}	mAP ^{mask}
Baseline	38.8	35.1
Self-Attention	40.1	36.0
Ours	41.4	37.3

COCO

method	Тор-1 Асс	Тор-5 Асс
Baseline	74.9	91.9
Self-Attention	75.9	92.2
Ours	76.3	92.7

Kinetics-400

Minghao Yin, Zhuliang Yao, Yue Cao et al. Disentangled Non-Local Neural Networks. ECCV'2020

Replace Convolution

ResNet

LR-Net

LR-Net-50 (7×7, m=8)

1×1,64

7×7 LR, 64, stride 2

 3×3 max pool, stride 2

 $1 \times 1,100$

 $1 \times 1,256$ $1 \times 1,200$

1×1, 512

 $1 \times 1,400$

7×7 LR, 100

7×7 LR, 200

7×7 LR, 400

1×1, 1024

 $1 \times 1,800$

 $1 \times 1,2048$

7×7 LR, 800

global average pool

1000-d fc, softmax

 23.3×10^{6}

 4.3×10^{9}

 $\times 3$

 $\times 4$

 $\times 6$

 $\times 3$

Han Hu, Zheng Zhang, Zhenda Xie and Stephen Lin. Local Relation Networks for Visual Recognition. ICCV 2019

Classification on ImageNet (26 Layers)

Han Hu, Zheng Zhang, Zhenda Xie and Stephen Lin. Local Relation Networks for Visual Recognition. ICCV 2019

But ... slow in real computation

• Because different queries use different key sets

Stand-alone Self-attention (SASA)

Figure 5: Comparing parameters and FLOPS against accuracy on ImageNet classification across a range of network widths for ResNet-50. Attention models have fewer parameters and FLOPS while improving upon the accuracy of the baseline.

Prajit Ramachandran et al. Stand-Alone Self-Attention in Vision Models. NeurIPS 2019

Self-attention Networks(SAN)

Figure 1. Our self-attention block. C is the channel dimensionality. The left stream evaluates the attention weights α , the right stream transforms the features via a linear mapping β . Both streams reduce the channel dimensionality for efficient processing. The outputs of the streams are aggregated via a Hadamard product and the dimensionality is subsequently expanded back to C.

Method	no ro	tation	clockwise 90°		clockwi	ise 180°	
Wiethod	top-1	top-5	top-1	top-5	top-1	top-5	
ResNet26	73.6	91.7	49.1(24.5)	72.7(19.0)	50.6(23.0)	75.4(16.3)	
SAN10-pair.	74.9	92.1	51.8(23.1)	74.6(17.5)	54.7(20.2)	78.5(13.6)	
SAN10-patch.	77.1	93.5	53.1(24.0)	75.7(17.8)	54.6(22.5)	78.4(15.1)	
ResNet38	76.0	93.0	51.2(24.8)	74.2(18.8)	52.2(23.8)	76.9(16.1)	
SAN15-pair.	76.6	93.1	54.5(22.1)	77.1(16.0)	57.9(18.7)	80.8(12.3)	
SAN15-patch.	78.0	93.9	53.7(24.5)	76.1(17.8)	56.0(22.2)	79.5(14.4)	
ResNet50	76.9	93.5	52.6(24.3)	75.3(18.2)	52.9(24.0)	77.4(16.2)	
SAN19-pair.	76.9	93.4	54.7(22.2)	77.1(16.3)	58.0(18.9)	80.4(13.0)	
SAN19-patch.	78.2	93.9	54.2(24.0)	76.3(17.6)	56.2(22.0)	79.5(14.4)	

Robustness

Hengshuang Zhao et al. Exploring Self-attention for Image Recognition. CVPR 2020

Can NLP/CV share the same basic modules?

• Adapting <u>self-attention/Transformer layers</u> for CV modeling

Relationship Modeling of Basic Visual Elements

Transformer Detectors (DETR)

Model	GFLOPS/FPS	#params	AP	AP_{50}	AP_{75}	AP_{S}	$\operatorname{AP}_{\operatorname{M}}$	AP_{L}
Faster RCNN-DC5 Faster RCNN-FPN Faster RCNN-R101-FPN	320/16 180/26 246/20	$166M \\ 42M \\ 60M$	$39.0 \\ 40.2 \\ 42.0$	$60.5 \\ 61.0 \\ 62.5$	$\begin{array}{c} 42.3 \\ 43.8 \\ 45.9 \end{array}$	$21.4 \\ 24.2 \\ 25.2$	$43.5 \\ 43.5 \\ 45.6$	$52.5 \\ 52.0 \\ 54.6$
Faster RCNN-DC5+ Faster RCNN-FPN+ Faster RCNN-R101-FPN+	320/16 180/26 246/20	166M 42M 60M	$\begin{array}{c} 41.1 \\ 42.0 \\ 44.0 \end{array}$	61.4 62.1 63.9	44.3 45.5 47.8	22.9 26.6 27.2	$\begin{array}{c} 45.9 \\ 45.4 \\ 48.1 \end{array}$	55.0 53.4 56.0
DETR DETR-DC5 DETR-R101 DETR-DC5-R101	86/28 187/12 152/20 253/10	41M 41M 60M 60M	42.0 43.3 43.5 44.9	62.4 63.1 63.8 64.7	$\begin{array}{r} 44.2 \\ 45.9 \\ 46.4 \\ 47.7 \end{array}$	20.5 22.5 21.9 23.7	45.8 47.3 48.0 49.5	61.1 61.1 61.8 62.3

Nicolas Carion et al. End-to-End Object Detection with Transformers. ECCV 2020

Deformable Transformer Detectors

Figure 1: Illustration of the proposed Deformable DETR object detector.

ResNeXt-101 + DCN

ResNeXt-101 + DCN

 50.1
 69.7
 54.6
 30.6
 52.8
 64.7

 52.3
 71.9
 58.1
 34.4
 54.4
 65.6

Xizhou Zhu et al. Deformable DETR: Deformable Transformers for end-to-end object detection. ICLR 2021

Deformable DETR

Deformable DETR

Pix2Seq

Random ordering (multiple samples):

327 370 653 444 1001	544 135 987 338 1004	508 518 805 892 1004	0
544 135 987 338 1004	327 370 653 444 1001	508 518 805 892 1004	0
508 518 805 892 1004	544 135 987 338 1004	327 370 653 444 1001	0

Figure 1: Illustration of Pix2Seq framework for object detection. The neural net perceives an image and generates a sequence of tokens that correspond to bounding boxes and class labels.

Method	Backbone	#params	AP	AP ₅₀	AP ₇₅	APs	AP _M	APL
Faster R-CNN	R50-FPN	42M	40.2	61.0	43.8	24.2	43.5	52.0
Faster R-CNN+	R50-FPN	42M	42.0	62.1	45.5	26.6	45.4	53.4
DETR	R50	41M	42.0	62.4	44.2	20.5	45.8	61.1
Pix2seq (Ours)	R50	37M	43.0	61.0	45.6	25.1	46.9	59.4
Faster R-CNN	R101-FPN	60M	42.0	62.5	45.9	25.2	45.6	54.6
Faster R-CNN+	R101-FPN	60M	44.0	63.9	47.8	27.2	48.1	56.0
DETR	R101	60M	43.5	63.8	46.4	21.9	48.0	61.8
Pix2seq (Ours)	R 101	56M	44.5	62.8	47.5	26.0	48.2	60.3
Faster R-CNN	R50-DC5	166M	39.0	60.5	42.3	21.4	43.5	52.5
Faster R-CNN+	R50-DC5	166M	41.1	61.4	44.3	22.9	45.9	55.0
DETR	R50-DC5	41M	43.3	63.1	45.9	22.5	47.3	61.1
Pix2seq (Ours)	R50-DC5	38M	43.2	61.0	46.1	26.6	47.0	58.6
DETR	R101-DC5	60M	44.9	64.7	47.7	23.7	49.5	62.3
Pix2seq (Ours)	R101-DC5	57M	45.0	63.2	48.6	28.2	48.9	60.4

Ting Chen, Geoffrey Hinton et al. Pix2Seq: A Language Modeling Framework for Object Detection. Arxiv 2021

Relationship Modeling of Basic Visual Elements

Vision Transformer (ViT)

• by Google Brain (2020.10)

Model	FLOPs	Speed (TPU)
R50	4.3G	~2100 im/s
ViT-B/32	4.3G	~3000 im/s

Even with +50% speed-up due to shared a key set (globally) for all queries

Alexey Dosovitskiy et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. ICLR' 2021 GiF Credit: https://github.com/lucidrains/vit-pytorch

Image Classification on IMAGENET

Swin Transformer =

- Transformer
 - Strong modeling power
- + good priors for visual modeling
 - Hierarchy
 - Locality
 - Translational invariance

Ze Liu, Yutong Lin, Yue Cao, Han Hu et al. Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. ICCV 2021

Hierarchy

• Processing objects of different scales

Patch/Feature bin

Computation scope of self-attention

Locality by non-overlapped windows

- Proves beneficial in modeling the high correlation in visual signals (Yann LeCun)
- Linear complexity with increasing image resolution: from $O(n^2)$ to O(n)

ViT: 256²=65536 (Global)

Swin Transformer: 16x16²=4096 (Local)

Locality by non-overlapped windows

- Compared to sliding window (LR-Net)
 - Shared key set enables friendly memory access and is thus good for speed (larger than 3x)

shared key set for **q** and **q**'

Non-overlapped window (Swin Transformer)

sliding window (LR-Net)

Shifted non-overlapped windows

- Enable cross-window connection
 - Non-overlapped windows will result in no connection between windows
 - Performs as effective or even slightly better than the sliding window approach, due to regularization effects

Translational semi-invariance

• Relative position bias plays a more important role in vision than in NLP Attention $(Q, K, V) = \text{SoftMax}(QK^T/\sqrt{d} + B)V$,

<u>semi-invariance</u> is as effective as full-invariance in our experiments

Architecture instantiations

 Resolution of each stage is set similar as ResNet, to facilitate application to down-stream tasks

Application: object detection

- COCO object detection: #1 for single model (61.3 mAP)
 - Significantly surpass all previous CNN models (+5.3 mAP vs. Google's EfficientDet at CVPR21)
- COCO instance segmentation: #1 for single model (53.0 mAP)
 - Significantly surpass all previous CNN models (+3.9 mAP vs. Google's EfficientDet at CVPR21)

Application: object detection

 Performs consistently better than CNN on various object detectors and various model sizes (+3~4.5 mAP)

(a) Various frameworks											
Metho	od	Backb	one	AP ^{box}	AP ₅₀ ^{box}	AP ₇₅ ^{box}	#pa	aram.	FLOPs	FPS	
Casca	de	R-5	0	46.3	64.3	50.5	8	2 M	739G	18.0	
Mask R-	CNN	Swin	-T	50.5	69.3	54.9	8	6M	745G	15.3	+4.2
٨٣٩	c	R-5	0	43.5	61.9	47.0	3	2M	205G	28.3	
AIS	3	Swin	-T	47.2	66.5	51.3	3	6M	215G	22.3	+3.7
DonDoin	toV2	R-5	0	46.5	64.6	50.3	4	2M	274G	13.6	
Reprom	15 V Z	Swin	-T	50.0	68.5	54.2	4	5M	283G	12.0	+3.5
Spars	se	R-5	0	44.5	63.4	48.2	10)6M	166G	21.0	. 2. 4
R-CN	N	Swin	-T	47.9	67.3	52.3	11	0M	172G	18.4	+3.4
(b) '	Vario	us bac	kbo	nes w	. Casc	ade M	ask	R-C	NN		
	AP ^{box}	AP ₅₀	AP_{75}^{bc}	$\sum_{5}^{\infty} AP^n $	nask AP	^{nask} AP	mask 75	paran	nFLOP	s FPS	
DeiT-S [†]	48.0	67.2	51.7	7 41	.4 64	.2 44	4.3	80M	889G	10.4	
R50	46.3	64.3	50.5	5 40	.1 61	.7 43	3.4	82M	739G	18.0	. 4 2
Swin-T	50.5	69.3	54.9	9 43.	.7 66	.6 47	7.1	86M	745G	15.3	+4.2
X101-32	48.1	66.5	52.4	4 41	.6 63	.9 43	5.2	101M	[819G	12.8	
Swin-S	51.8	70.4	56.3	3 44.	.7 67	.9 48	3.5	107M	I 838G	12.0	+3.7
X101-64	48.3	66.4	52.3	3 41	.7 64	.0 43	5.1	140M	I 972G	10.4	120
Swin-B	51.9	70.9	56.5	5 45.	.0 68	.4 48	8.7	145M	I 982G	11.6	+3.0

Application: semantic segmentation

- ADE20K semantic segmentation: #1 for single model (57.0 mloU) with Swin-H
 - The largest and most difficult semantic segmentation benchmark
 - 20,000 training images, 150 categories
 - Significantly surpass all previous models (+8.6 mIoU vs. the previous best CNN model)

3rd-party application: medical image segmentation

Table 1. Segmentation accuracy of different methods on the Synapse multi-organ CTdataset.

Methods	$DSC\uparrow$	$\mathrm{HD}\!\!\downarrow$	Aorta	Gallbladder	Kidney(L)	Kidney(R)	Liver	Pancreas	Spleen	Stomach
V-Net [35]	68.81	-	75.34	51.87	77.10	80.75	87.84	40.05	80.56	56.98
DARR [36]	69.77	-	74.74	53.77	72.31	73.24	94.08	54.18	89.90	45.96
R50 U-Net [2]	74.68	36.87	87.74	63.66	80.60	78.19	93.74	56.90	85.87	74.16
U-Net $[3]$	76.85	39.70	89.07	69.72	77.77	68.60	93.43	53.98	86.67	75.58
R50 Att-UNet [2]	75.57	36.97	55.92	63.91	79.20	72.71	93.56	49.37	87.19	74.95
Att-UNet [37]	77.77	36.02	89.55	68.88	77.98	71.11	93.57	58.04	87.30	75.75
R50 ViT [2]	71.29	32.87	73.73	55.13	75.80	72.20	91.51	45.99	81.99	73.95
TransUnet [2]	77.48	31.69	87.23	63.13	81.87	77.02	94.08	55.86	85.08	75.62
SwinUnet	79.13	21.55	85.47	66.53	83.28	79.61	94.29	56.58	90.66	76.60

Table 2. Segmentation accuracy of different methods on the ACDC dataset.

Methods	DSC	RV	Myo	LV
R50 U-Net	87.55	87.10	80.63	94.92
R50 Att-UNet	86.75	87.58	79.20	93.47
R50 ViT	87.57	86.07	81.88	94.75
TransUnet	89.71	88.86	84.53	95.73
SwinUnet	90.00	88.55	85.62	95.83

Fig. 3. The segmentation results of different methods on the Synapse multi-organ CT dataset.

https://arxiv.org/abs/2105.05537

3rd-party application: Image Restoration (SwinIR)

Figure 2: The architecture of the proposed SwinIR for image restoration.

٠

IPT (CVPR2021)

SwinIR (ours)

• HAN (ECCV2020)

RCAN (ECCV2018)

32.70

32.65

Figure 1: PSNR results v.s the total number of parameters of different methods for image SR (\times 4) on Set5 [3].

Jingyun Liang, Jiezhang Cao et al. SwinIR: Image Restoration Using Swin Transformer, Arxiv 2021

3rd-party application: Person Re-ID

Methods	Rank@1	mAP	□ Iayumi / Person_relD_baseline_pytorch □ublic ♥ sponsor ♥ Watch → 77 ☆ Star 2.8k ♥ Fork 813
ResNet-50	88.84%	71.59%	<> Code ⊙ Issues 91 In Pull requests 1 ⊙ Actions III Projects II Wiki ① Security 🗠 Insights
ResNet-50 (all tricks+Circle)	92.13%	79.84%	⁹ / ₈ master - ⁹ / ₈ 3 branches ⁰ / ₉ 0 tags Go to file Add file -
ResNet-50 (all tricks+Circle+DG)	92.13%	80.13%	Iayumi Update README.md ca2c240 19 days ago O404 commits Pytorch ReID: A tiny, friendly, Strong pytorch implement of person re-identification
Swin	92.73%	79.71%	github/ISSUE_TEMPLATE Update issue templates 5 months ago baseline. Tutorial baseline. (autorial)
Swin (all tricks+Circle)	93 65%	83 65%	GPU-Re-Ranking add accimage and FSGD 2 months ago rson_reID_baseline_pytorch/t
Swin (an tricks circle)	55.0570	83.0370	colab Update README.md 2 months ago ee/master/tutorial
Swip (all tricks) Circle (h1C)	02 010/	OF 170/	leaderboard add one arXiv 3 months ago tutorial re-ranking
Swiii (all tricks+circle+b10)	95.91%	85.17%	model add gitkeep 2 months ago
Swin (all tricks+Circle+b16+DG)	94.00%	85.36%	

https://github.com/layumi/Person_reID_baseline_pytorch

Application: self-supervised learning (MoBY)

Online: Optimizer Update

Figure 1: The pipeline of MoBY.

Method	Arch.	Epochs	Params (M)	FLOPs (G)	img/s	Top-1 acc (%)
Sup.	DeiT-S	300	22	4.6	940.4	79.8
Sup.	Swin-T	300	29	4.5	755.2	81.3
MoCo v3	DeiT-S	300	22	4.6	940.4	72.5
DINO	DeiT-S	300	22	4.6	940.4	72.5
DINO [†]	DeiT-S	300	22	4.6	940.4	75.9
MoBY	DeiT-S	300	22	4.6	940.4	72.8
MoBY	Swin-T	100	29	4.5	755.2	70.9
MoBY	Swin-T	300	29	4.5	755.2	75.0

Table 1: Comparison of different SSL methods and different Transformer architectures on ImageNet-1K linear evaluation. [†] denotes DINO with a multi-crop scheme in training.

Zhenda Xie, Yutong Lin et al. Self-supervised Learning with Swin Transformers, Arxiv 2021

Application: self-supervised learning (EsViT)

Figure 1: Efficiency vs accuracy comparison under the linear classification protocol on ImageNet. Left: Throughput of all SoTA SSL vision systems, circle sizes indicates model parameter counts; Right: performance over varied parameter counts for models with moderate (throughout/#parameters) ratio. Please refer Section 4.1 for details.

Chunyuan Li, Jianwei Yang et al. Efficient Self-supervised Vision Transformers for Representation Learning, Arxiv 2021

Application: video recognition

Too expensive!

How to approximate Global Self-Attention?

input: $T \times H \times W = 8 \times 8 \times 8$ Global Attention: $(T \times H \times W)^2$

2D/3D window to perform self-attention

Video Swin Transformer

- 2D Locality -> 3D Locality
- Keep Hierarchy & Translation Semi-invariance

Ze Liu, Jia Ning, Yue Cao et al. Video Swin Transformer, Arxiv 2021

Video Swin Transformer

3D tokens: T' \times H' \times W' = 8 \times 8 \times 8 Window size: P \times M \times M = 4 \times 4 \times 4

Figure 2: Overall architecture of Video Swin Transformer (tiny version, referred to as Swin-T).

Experiments

• Swin Transformer achieves **SOTA** on major video benchmarks with 20x less pre-training data and 3x smaller model size

Table 1: Comparison to state-of-the-art on Kinetics-400. " 384^{+} " signifies that the model uses a larger spatial resolution of 384×384 . "Views" indicates # temporal clip \times # spatial crop. The magnitudes are Giga (10^{9}) and Mega (10^{6}) for FLOPs and Param respectively.

Method	Pretrain	Top-1	Top-5	Views	FLOPs	Param
R(2+1)D [37]	-	72.0	90.0	10×1	75	61.8
I3D [6]	ImageNet-1K	72.1	90.3	-	108	25.0
NL I3D-101 [40]	ImageNet-1K	77.7	93.3	10×3	359	61.8
ip-CSN-152 [36]	-	77.8	92.8	10×3	109	32.8
CorrNet-101 [39]	-	79.2	-	10×3	224	-
SlowFast R101+NL [13]	-	79.8	93.9	10×3	234	59.9
X3D-XXL [12]	-	80.4	94.6	10×3	144	20.3
MViT-B, 32×3 [10]	-	80.2	94.4	1 × 5	170	36.6
MViT-B, 64×3 [10]	-	81.2	95.1	3 × 3	455	36.6
TimeSformer-L [3]	ImageNet-21K	80.7	94.7	1×3	2380	121.4
ViT-B-VTN [29]	ImageNet-21K	78.6	93.7	1×1	4218	11.04
ViViT-L/16x2 [1]	ImageNet-21K	80.6	94.7	4×3	1446	310.8
ViViT-L/16x2 320 [1]	ImageNet-21K	81.3	94.7	4×3	3992	310.8
ip-CSN-152 [36]	IG-65M	82.5	95.3	10×3	109	32.8
ViViT-L/16x2 [1]	JFT-300M	82.8	95.5	4×3	1446	310.8
ViViT-L/16x2 320 [1]	JFT-300M	83.5	95.5	4×3	3992	310.8
ViViT-H/16x2 [1]	JFT-300M	84.8	95.8	4×3	8316	647.5
Swin-T	ImageNet-1K	78.8	93.6	4 × 3	88	28.2
Swin-S	ImageNet-1K	80.6	94.5	4×3	166	49.8
Swin-B	ImageNet-1K	80.6	94.6	4×3	282	88.1
Swin-B	ImageNet-21K	82.7	95.5	4×3	282	88.1
Swin-L	ImageNet-21K	83.1	95.9	4×3	604	197.0
Swin-L (384↑)	ImageNet-21K	84.9	96.6	10×5	2107	200.0

+3.6% using the same pre-training data

Table 2: Comparison to state-of-the-art on Kinetics-600.

Method	Pretrain	Top-1	Top-5	Views	FLOPs	Param
SlowFast R101+NL [13]	-	81.8	95.1	10×3	234	59.9
X3D-XL [12]	-	81.9	95.5	10×3	48	11.0
MViT-B-24, 32×3 [9]	-	83.8	96.3	5 × 1	236	52.9
TimeSformer-HR [3]	ImageNet-21K	82.4	96	1 × 3	1703	121.4
ViViT-L/16x2 320 [1]	ImageNet-21K	83.0	95.7	4 × 3	3992	310.8
ViViT-H/16x2 [9]	JFT-300M	85.8	96.5	4×3	8316	647.5
Swin-B	ImageNet-21K	83.8	96.4	4 × 3	282	88.1
Swin-L (384↑)	ImageNet-21K	85.9	97.1	4 × 3	2107	200.0

+2.9% using the same pre-training data

Table 3: Comparison to state-of-the-art on Something-Something v2.

Method	Pretrain	Top-1	Top-5	Views	FLOPs	Param
TimeSformer-HR [3]	ImageNet-21K	62.5	-	1×3	1703	121.4
SlowFast R101, 8×8 [13]	Kinetics-400	63.1	87.6	1×3	106	53.3
TSM-RGB [27]	Kinetics-400	63.3	88.2	2×3	62	42.9
MSNet [23]	ImageNet-21K	64.7	89.4	1×1	67	24.6
TEA [26]	ImageNet-21K	65.1	89.9	10×3	70	-
blVNet [11]	SSv2	65.2	90.3	1×1	129	40.2
ViViT-L/16x2 [1]	-	65.4	89.8	-	903	352.1
MViT-B, 64×3 [10]	Kinetics-400	67.7	90.9	1×3	455	36.6
MViT-B-24, 32×3 [10]	Kinetics-600	68.7	91.5	1×3	236	53.2
Swin-B	Kinetics-400	69.6	92.7	1×3	321	88.8

+1.9% using the same pre-training data

Swin Transformer

State of the Art Object Detection on COCO test-dev (using additional training data)
State of the Art Instance Segmentation on COCO test-dev (using additional training data)
State of the Art Object Detection on COCO minival (using additional training data)
State of the Art Instance Segmentation on COCO minival (using additional training data)
Ranked #8 Semantic Segmentation on ADE20K (using additional training data)
Image: Ranked #9 Semantic Segmentation on ADE20K val
III State of the Art Action Recognition on Something-Something V2 (using additional training
State of the Art Action Classification on Kinetics-400 (using additional training data)
State of the Art Action Classification on Kinetics-600 (using additional training data)

By Ze Liu*, Yutong Lin*, Yue Cao*, Han Hu*, Yixuan Wei, Zheng Zhang, Stephen Lin and Baining Guo.

This repo is the official implementation of "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows".

It currently includes code and models for the following tasks:

Image Classification: Included in this repo. See get_started.md for a quick start.

Object Detection and Instance Segmentation: See Swin Transformer for Object Detection.

Semantic Segmentation: See Swin Transformer for Semantic Segmentation.

Self-Supervised Learning: See Transformer-SSL.

Video Action Recognition: See Video Swin Transformer.

Semi-Supervised Object Detection: See Soft Teacher.

Already Got 4.6k stars and >200 citations! ICCV 2021 Oral Presentation

https://github.com/microsoft/Swin-Transformer

Paper

Code
Relationship Modeling of Basic Visual Elements

Transformers: General Relationship Modeling

- Visual elements
 - Pixel-to-pixel
 - Pixel-to-object
 - Object-to-object
- Multi-modality
 - Visual token (patches/objects/pixels) & language token (words)
- Point clouds
 - Points in point clouds

Tokens from multiple modalities

Multi-Modality Learning

• Humans routinely perform tasks which always involve multiple modalities. Every time you ask someone to imagine a scene, or describe what you're seeing, you're performing a task bridging both linguistic and visual representation.

Who is wearing glasses?

man

woman

• But the interaction between language and vision, despite seeing traction as of late, is still **largely unexplored**.

What is visual-linguistic task?

• Visual-linguistic tasks are related to the systems that can demonstrate their visual understanding by generating or responding to natural language in the context of images and videos.

Visual-linguistic understanding Visual-linguistic generation

Visual-linguistic reasoning

Who is wearing glasses? man woman

Visual Question Answering

Image Captioning

Why is **[person4**] pointing at [person1]? a) He is telling [person3] that [person1] ordered the pancakes b) He just told a joke. c) He is feeling accusatory towards [person1]] d) He is giving [person1] directions.

Visual Commonsense Reasoning

Common Need

• Better align visual and linguistic clues, which is the main and common need for all visual-linguistic tasks

VL-BERT

Image

VL-BERT

Image

	Pre-training Data	Visual Question Answering		Referred Expression Comprehension		Image-Text Retrieval		Visual Commonsense Reasoning		
Method		Test-dev Acc	Test-std Acc	Labeled Regions Acc	Detected Regions Acc	Text-to- Image Recall@1	Image- to-Text Recall@1	Q -> A Acc	QA -> R Acc	Q -> AR Acc
DFAF (Gao et al., 2018)	-	70.22	70.34	-	-	-	-	-	-	-
MAttNet (Yu et al., 2018)	-	-	-	75.13	71.62	-	-	-	-	-
Concept Graph (Shi et al., 2019)	_	-	_	_	_	61.4	76.6	-	-	-
R2C (Zellers et al., 2019)	-	-	-	_	_	_	-	65.1	67.3	44.0
ViLBERT (Lu et al., 2019)	CC	70.55	70.92	_	78.52	_	-	73.3	74.6	54.8
VisualBERT (Li et al., 2019b)	COCO	70.80	71.00	_	_	_	_	71.6	73.2	52.4
B2T2 (Alberti et al., 2019)	CC	-	_	_	_	_	_	72.6	75.7	55.0
VL-BERT (Su et al., 2020)	CC	71.79	72.22	83.62	78.57	69.1	85.4	75.8	78.4	59.7
UNITER (Chen et al., 2020)	CC+COCO+VG +SBU	73.24	73.40	85.87	81.37	77.5	88.2	77.3	80.8	62.8

Dual-tower Visual-linguistic Model (CLIP)

Alec Radford, Jong Wook Kim et al. Learning Transferable Visual Modes From Natural Language Supervision. ICML 2021.

Transformers: General Relationship Modeling

- Visual elements
 - Pixel-to-pixel
 - Pixel-to-object
 - Object-to-object
- Multi-modality
 - Visual token (patches/objects/pixels) & language token (words)
- Point clouds
 - Points in point clouds

Background

Lidar

Depth Sensor

Autonomous Driving

Robot Navigation

Augmented Reality

3D Point Cloud

Position Pooling

$$G(\Delta p_{ij}, f_j) = Concat[\Delta x_{ij}f_j^0; \Delta y_{ij}f_j^1; \Delta z_{ij}f_j^2]$$

mothod	ModelNet40	S3DIS	PartNet	
	acc	mIoU	val	test
DensePoint $[15]$	93.2	-	-	-
KPConv [30]	92.9	65.7	-	-
PointCNN $[14]$	92.5	65.4	-	46.4
$baseline^*$	91.4	51.5	42.5	44.6
baseline ^{\dagger} (AVG)	91.4	51.0	44.2	45.8
baseline ^{\dagger} (MAX)	91.8	58.4	45.4	47.4
point-wise MLP	92.8	66.2	48.1	51.5
pseudo grid	93.0	65.9	50.8	53.0
adapt weights	93.0	66.5	50.1	53.5
PosPool (PPNet)	92.9	66.5	50.0	53.4
$PosPool^* (PPNet^*)$	93.2	66.7	50.6	53.8

Ze Liu, Han Hu, Yue Cao et al. A Closer Look at Local Aggregation Operators in Point Cloud Analysis, ECCV 2020

Point Transformer

• output: (у,	p)
-------------	----	----

				PointNet [25]	78.5	66.2	47.
				RSNet [12]	—	66.5	56.
Method	input	mAcc	OA	SPGraph [15]	85.5	73.0	62.
3DShapeNets [47]	voxel	77.3	84.7	PAT [50]	_	76.5	64.
VoxNet [23]	voxel	83.0	85.9	PointCNN [20]	88.1	75.6	65.
Subvolume [26]	voxel	86.0	89.2	PointWeb [55]	87.3	76.2	66.
MVCNN [34]	image	-	90.1	ShellNet [53]	87.1	_	66.
PointNet [25]	point	86.2	89.2	RandLA-Net [37]	88.0	82.0	70
A-SCN [48]	point	87.6	90.0	KPConv [37]	-	79.1	70.
Set Transformer [17]	point	_	90.4	PointTransformer	00.2	<u> </u>	70.
PAT [50]	point	_	91.7	Fonit Hanstonner	90.2	01.9	
PointNet++ [27]	point	_	91.9	Method	cat. n	nIoU	ins. mIo
SpecGCN [40]	point	-	92.1	PointNet [25]	80	.4	83.7
PointCNN [20]	point	88.1	92.2	A-SCN [48]	_	-	84.6
DGCNN [44]	point	90.2	92.2	PCNN [42]	81	.8	85.1
PointWeb [55]	point	89.4	92.3	PointNet++ [27]	81.9		85.1
SpiderCNN [49]	point	_	92.4	DGCNN [44]	82.3		85.1
PointConv [46]	point	_	92.5	Point2Sequence [21]] –		85.2
Point2Sequence [21]	point	90.4	92.6	SpiderCNN [49]	81.7		85.3
KPConv [37]	point	_	92.9	SPLATNet [33]	83.7		85.4
InterpCNN [22]	point	_	93.0	PointConv [46]	82.8		85.7
PointTransformer	point	90.6	93.7	SGPN [43]	82	8	85.8
. <i></i>				PointCNN [20]	84	6	86.1
ModelNet40			InterpCNN [22]	84	.0	86.3	
				KPConv [37]	85	.1	86.4
				PointTransformer	83	.7	86.6

S3DIS

OA

mAcc

66.2

mIoU 47.6

Method

ShapeNetPart

Hengshuang Zhao, Li Jiang et al. Point Transformer, Arxiv 2020

3D Object Detection with Transformers

Mathad	Scar	NetV2	SUN RGB-D		
Method	AP25	AP50	AP25	AP50	
BoxNet	49.0	21.1	52.4	25.1	
3DETR (ICCV21)	62.7	37.5	58.0	30.3	
VoteNet (ICCV19)	60.4	37.5	58.3	33.4	
3DETR-m (ICCV21)	65.0	47.0	59.1	32.7	
H3DNet (ECCV20)	67.2	48.1	60.1	39.0	
GFTrans (ICCV21)	69.1	52.8	63.0	45.2	

Ze Liu, Zheng Zhang, Yue Cao et al. *Group-Free 3D Object Detection via Transformers*, ICCV 2021 Misra Ishan et al. *An End-to-End Transformer Model for 3D Object Detection*, ICCV 2021

Summary: The trend of Transformer

- Visual elements
 - Pixel-to-pixel
 - Pixel-to-object
 - Object-to-object
- Multi-modality
 - Visual token (patches/objects/pixels) & language token (words)
- Point clouds
 - Points in point clouds

The trend of Transformer

Fig. 1: Statistics on the number of times keywords such as BERT, Self-Attention, and Transformers appear in the titles of Peerreviewed and arXiv papers over the past few years (in Computer Vision and Machine Learning). The plots show consistent growth in recent literature. This survey covers recent progress on Transformers in the computer vision domain.

Credit to: Salman Khan et al. Transformers in Vision: A Survey. Arxiv 2021

Why Transformer?

- Three merits to use Transformer vs. CNNs
 - Merit I: General modeling capability
 - Merit II: More **powerful** modeling capability
 - Merit III: Scaling to large model and large data

Transformer (2017.5)

- <u>Merit I</u>: General modeling capability
 - All concepts (concrete or abstract) and relationships can be modeled

pixel-to-pixel

object-to-pixel

object-to-object

• <u>Merit I</u>: General modeling capability

- All concepts (concrete or abstract) and relationships can be modeled
- Perceiver-IO: A general architecture for structured inputs & outputs

Domain	Input Modality	Encoder KV input	Encoder KV channels	Decoder query input	Decoder query channels
Language (MLM)	Text	byte/token encoding + learned pos	768	learned pos	1280
Language (Perceiver IO++ MLM)	Text	byte/token encoding + learned pos	768	learned pos	1536
Language (GLUE)	Text	byte/token encoding + learned pos	768	Class query (per-task)	1280
Language (Perceiver IO++ GLUE)	Text	byte/token encoding + learned pos	768	Class query (per-task)	1536
Optical Flow	Video (image pairs)	Video (image pairs) $[2 \times \text{conv features, 3D FFs}]$		$[2 \times \text{conv features}, 3D \text{ FFs}]$	450
Optical Flow (pixels)	Video (image pairs)	[Linear(2 \times RGB), 2D FFs]	322	[Linear(2 × RGB), 2D FFs]	322
Kinetics	Video, Audio, Label	[Linear(RGB), 3D FFs, learned modality feat.] [sound pressure, 1D FF, learned modality feat.] [one-hot label, learned modality feat.]	704 704 704	[3D FFs, learned modality feat.] [1D FF, learned modality feat.] [learned modality feat.]	1026 1026 1026
StarCraft II	SC2 entities	Entity features	128	Entity features	128
ImageNet	Image	[RGB, 2D FFs]	261	Class query (single)	1024
ImageNet (learned pos)	Image	[Linear(RGB), learned pos]	512	Class query (single)	1024
ImageNet (conv)	Image	[Conv features, 2D FFs]	322	Class query (single)	1024

- <u>Merit II</u>: More powerful modeling
 - "Convolution is too local!" -> larger receptive field with lower computation
 - "Convolution is exponentially inefficient! " -> adaptive computation

• Merit III: Scaling to large model and large data

Why Transformer?

- Three merits to use Transformer vs. CNNs
 - Merit I: General modeling capability
 - Merit II: More **powerful** modeling capability
 - Merit III: Scaling to large model and large data

Transformer (2017.5)

What is next?

- The machine learning era
 - a **paradigm** unification: learning from **historical data** and make future predictions
- The deep learning era
 - The unification of **architecture:** CNN, RNN, LSTM -> Transformer
- The universal model era?
 - The unification of **model** itself: ONE model for multimodal input and multi tasks

The new era just begins, and there is a long road in the front

Thanks All! Q & A