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ABSTRACT
Deep hashing establishes efficient and effective image retrieval by
end-to-end learning of deep representations and hash codes from
similarity data. We present a compact coding solution, focusing
on deep learning to quantization approach that has shown supe-
rior performance over hashing solutions for similarity retrieval.
We propose Deep Triplet Quantization (DTQ), a novel approach
to learning deep quantization models from the similarity triplets.
To enable more effective triplet training, we design a new triplet
selection approach, Group Hard, that randomly selects hard triplets
in each image group. To generate compact binary codes, we further
apply a triplet quantization with weak orthogonality during triplet
training. The quantization loss reduces the codebook redundancy
and enhances the quantizability of deep representations through
back-propagation. Extensive experiments demonstrate that DTQ
can generate high-quality and compact binary codes, which yields
state-of-the-art image retrieval performance on three benchmark
datasets, NUS-WIDE, CIFAR-10, and MS-COCO.
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1 INTRODUCTION
Approximate nearest neighbors (ANN) search has been widely
applied to retrieve large-scale multimedia data in search engines
and social networks. Due to the low storage cost and fast retrieval
speed, learning to hash has been increasingly popular in the ANN
research community, which transforms high-dimensional media
data into compact binary codes and generates similar binary codes
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for similar data items. This paper will focus on data-dependent
hashing schemes for efficient image retrieval, which have achieved
better performance than data-independent hashing methods, e.g.
Locality-Sensitive Hashing (LSH) [11].

A rich line of hashing methods have been proposed to enable effi-
cient ANN search using Hamming distance [9, 13, 18, 23, 27, 32, 38].
Recently, deep hashing methods [3, 5, 8, 15, 19, 20, 22, 30, 36, 41]
have shown that both image representation and hash coding can be
learned more effectively using deep neural networks, resulting in
state-of-the-art results on many benchmark datasets. In particular,
it proves crucial to jointly preserve similarity and control quan-
tization error of converting continuous representations to binary
codes [3, 20, 22, 41]. However, a pivotal weakness of these deep
hashing methods is that they first learn continuous deep repre-
sentations, and then convert them into hash codes by a separated
binarization step. By continuous relaxation, i.e. solving the original
discrete optimization of hash codes with continuous optimization,
the optimization problem deviates significantly from the original
hashing objective. As a result, these methods cannot learn exactly
compact binary hash codes in their optimization.

To address the limitation of continuous relaxation, Deep Quan-
tization Network (DQN) [2] and Deep Visual-Semantic Quantiza-
tion (DVSQ) [1] are proposed to integrate quantization method
[10, 34, 39] and deep learning. The quantization method represents
each point by a short binary code formed by the index of the nearest
center, which can generate natively binary codes and empirically
achieve better performance than hashing methods for ANN search.
However, previous deep quantization methods are either point-wise
method that relies on expensive class-label information, or pairwise
method that cannot capture the relative similarity between images,
i.e. a pair of images should not be seen as absolutely similar or
dissimilar. In other words, there should be a continuous spectrum
from very similar to very dissimilar relations.

Recently, the triplet loss [28] has been studied for computer vision
problems. The triplet loss captures the relative similarity, which only
brings anchor images closer to positive samples than to negative
samples, hence it fits the ranking tasks naturally and achieves better
performance than point-wise and pairwise losses for retrieval tasks.
However, how to enable effective triplet training for deep learning
to quantization with only pairwise similarity available still remains
a challenge. Note that, without effective triplet selection, previous
deep hashing method with triplet loss [19] cannot achieve superior
results. Hence, how to select good triplets for effective training in
deep quantization also remains an open problem.

Towards these open problems, this paper presents Deep Triplet
Quantization (DTQ) for efficient and effective image retrieval, which
introduces a novel triplet training strategy to deep quantization,
offering superior retrieval performance. The proposed solution is
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comprised of four main components: 1) a novel triplet selection
module, Group Hard, to mine good triplets for effective triplet train-
ing; 2) a standard deep convolutional neural network (CNN), e.g.
AlexNet or ResNet, for learning deep representations; 3) a well-
specified triplet loss for pulling together similar pairs and pushing
away dissimilar pairs; and 4) a novel triplet quantization loss with
weak orthogonality constraint for converting the deep representa-
tions of different samples (such as the anchor, positive and negative
samples) in the triplets into B-bit compact binary codes. The weak-
orthogonality reduces the redundancy of codebooks and controls
the quantizability of deep representations. Comprehensive empiri-
cal evidence shows that the proposed DTQ can generate compact
binary codes and yield state-of-the-art retrieval results on three
image retrieval benchmarks, NUS-WIDE, CIFAR-10, and MS-COCO.

2 RELATEDWORK
Existing hashing methods can be categorized into unsupervised
hashing and supervised hashing [9, 12, 13, 18, 23, 25, 27, 32, 37, 38].
Please refer to [33] for a comprehensive survey.

Unsupervised hashing methods learn hash functions to encode
data points to binary codes by training from unlabeled data. Typ-
ical learning criteria include reconstruction error minimization
[13, 16, 29] and graph learning [24, 35]. Supervised hashing explores
supervised information (e.g. given similarity or relevance feedback)
to learn compact hash codes. Binary Reconstruction Embedding
(BRE) [18] pursues hash functions by minimizing the squared er-
rors between the distances of data points and the distances of their
corresponding hash codes. Minimal Loss Hashing (MLH) [27] and
Hamming Distance Metric Learning [28] learn hash codes by mini-
mizing the triplet loss functions based on similarity of data points.
Supervised Hashing with Kernels (KSH) [23] and Supervised Dis-
crete Hashing (SDH) [30] build discrete binary codes by minimizing
the Hamming distances across similar pairs and maximizing the
Hamming distances across dissimilar pairs.

As deep convolutional networks [14, 17] yield advantageous
performance on many computer vision tasks, deep hashing meth-
ods have attracted wide attention recently. CNNH [36] adopts a
two-stage strategy in which the first stage learns binary hash codes
and the second stage learns a deep-network based hash function
to fit the codes. DNNH [19] improved CNNH with a simultaneous
feature learning and hash coding pipeline such that deep repre-
sentations and hash codes are optimized by the triplet loss. DHN
[41] and HashNet [3] improve DNNH by jointly preserving the
pairwise semantic similarity and controlling the quantization error
by simultaneously optimizing the pairwise cross-entropy loss and
quantization loss via a multi-task approach.

Quantization methods [1, 2] represent each point by a short code
formed by the index of the nearest center, have been shown to give
more powerful representation ability than hashing for approximate
nearest neighbor search. To our best knowledge, Deep Quantiza-
tion Network (DQN) [2] and Deep Visual-Semantic Quantization
(DVSQ) [1] are the only two prior works on deep learning to quan-
tization. DQN jointly learns deep representations via a pairwise
cosine loss and a product quantization loss [16] for generating com-
pact binary codes. DVSQ proposes a pointwise adaptive-margin

Hinge loss exploring class labels, and a visual-semantic quantization
loss for inner-product search.

There are several key differences between our work and previous
deep learning to quantization methods. 1) Our work introduces a
novel triplet training strategy to deep quantization framework for
efficient similarity retrieval. It is worth noting that DTQ can learn
compact binary codes when only the relative similarity information
is available, which is more general than the label-based quantiza-
tion method DVSQ. 2) During the triplet learning procedure, DTQ
proposes a novel triplet mining strategy, Group Hard, resulting in
faster convergence and better search accuracy. 3) DTQ proposes a
novel triplet quantization loss with weak orthogonality constraint
to reduce coding redundancy. An end-to-end architecture to join the
above three terms yield both efficient and effective image retrieval.

3 DEEP TRIPLET QUANTIZATION
In similarity retrieval, we are given N training points X = {xi }Ni=1,
where some pairs of points xi and x j are given with pairwise simi-
larity labels si j , where si j = 1 if xi and x j are similar while si j = 0
if xi and x j are dissimilar. The goal of deep learning to quantization
is to learn a composite quantizer q : x 7→ b ∈ {0, 1}B from input
space to binary coding space {0, 1}B through deep networks, which
encodes each point x into B-bit binary code b = q(x) such that the
supervision in the training data can be maximally preserved. In
supervised hashing, the similarity pairs {(xi ,x j , si j ) : si j ∈ S} are
readily available from semantic labels or relevance feedbacks from
click-through data in many image search engines.

We propose Deep Triplet Quantization (DTQ), an end-to-end
architecture to join deep learning and quantization, as shown in
Figure 1. DTQ has four key components: 1) a novel triplet selection
module, Group Hard, to mine a appropriate number of good triplets
for effective triplet training; 2) a standard deep convolutional neural
network (CNN), e.g. AlexNet, VGG, or ResNet, for learning deep
representations; 3) a well-specified triplet loss for pulling together
similar pairs and pushing away dissimilar pairs; and 4) a novel
triplet quantization loss with weak orthogonality constraint for
converting deep representations of different samples (the anchor,
positive and negative samples) in triplets into B-bit compact binary
codes and controlling the quantizability of the deep representations.

3.1 Triplet Training
We train a convolutional network from image triplets T={ti }Nt

i=1.
Each triplet ti=⟨xai ,x

p
i ,x

n
i ⟩ is constructed from pairwise similarity

data {(xi ,x j , si j ) : si j ∈ S} as follows: for each anchor image xai ,
we find a positive image xpi with sap = 1 (xai and xpi are similar),
and a negative image xni with san = 0 (xai and xni are dissimilar).
Given a triplet ti=⟨xai ,x

p
i ,x

n
i ⟩, the deep network maps the triplet ti

into a learned feature space with f (ti )=⟨zai ,z
p
i ,z

n
i ⟩. We ensure that

an anchor image xai is closer to all positive images xpi than to all
negative images xni . And the relative similarity between the images
in triplets, xai ,x

p
i ,x

n
i , are measured by the Euclidean distances

between their deep features, zai ,z
p
i , z

n
i . Thus the triplet loss is

L =

Nt∑
i=1

Li =

Nt∑
i=1

max
(
0,δ −

zai − zni 22 + zai − zpi 22), (1)
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Figure 1: The proposed Deep Triplet Quantization (DTQ) model consists of four main components: 1) a novel triplet selection
module, Group Hard, to mine good triplets for effective triplet training and faster convergence; 2) a standard deep convolu-
tional neural network (CNN), e.g. AlexNet, VGG or ResNet, for learning deep representations; 3) a well-specified triplet loss
for pulling together similar pairs and pushing away dissimilar pairs; and 4) a novel triplet quantization loss with weak orthog-
onality constraint for converting the deep representations of different samples (the anchor, positive and negative samples) in
the triplets into B-bit compact binary codes and controlling the quantizability of the deep representations. Best viewed in color.

where δ is a margin that is enforced between positive and negative
pairs, and T is the set of cardinality Nt for all possible triplets in the
training set. Compared to the widely-used pointwise and pairwise
metric-learning losses [1, 2] in previous deep quantization methods,
the triplet loss (1) only requires anchor samples to bemore similar to
positive samples than to negative samples, by a specifically margin.
This establishes a relative similarity relation between images, thus
is much more reasonable than the absolute similarity relation used
in previous pointwise or pairwise approaches.

However, as the dataset gets larger, the number of triplets grows
cubically, and generating all possible triplets would result in many
easy triplets with Li = 0 in Eq. (1), which would not contribute
to the training and suffer from slower convergence. Note that,
without a sophisticated triplet selection procedure, previous deep
hashing methods with the triplet loss [19] cannot achieve superior
performance. Consequently, it is crucial to mine good triplets for
effective triplet training and faster convergence. In this paper, we
propose a novel triplet selection module, Group Hard, to ensure
the number of mined valid triplets is neither too big nor too small.
The core idea is that we first randomly split the training data into
several groups {Gi }

|G |
i=1, then randomly select one hard negative

sample for each anchor-positive pair in one group. The proposed
triplet selection method is formulated as

T =

|G |⋃
i=1

⋃
a∈Gi

⋃
p∈Gp

i

rand
(
Gn
i
)
, (2)

where Gp
i =

{
p ∈ Gi : p , a, sap = 1

}
is the group of positive sam-

ples consisting of the samples similar to the anchor a in the ith
group, rand(Gn

i ) is the random function that randomly chooses
one negative sample from the group of hard negative samples

Gn
i =

{
n ∈ Gi : δ −

zai − zni 22 + zai − zpi 22 > 0, san = 0
}
. Here hard

negative sample xni is defined as having non-zero loss value for a
triplet ti=⟨xai ,x

p
i ,x

n
i ⟩. Note that, mining only the triplets with the

hardest negative images would select the outliers in the dataset and
make it unable to learn ground truth relative similarity. Thus in
this paper, the proposed DTQ only selects the negative examples

with moderate hardness, based on the random sampling rand(Gn
i )

instead of argmax(Gn
i ) in Eq. (2).

As the training proceeds, the average of triplet loss becomes
smaller and the size of the hard triplets reduces. To ensure that there
are enough hard triplets each epoch for effective triplet training,
we design a decay strategy for the size of groups |G | as: if the actual
number of valid hard triplets is lower than the minimum number of
the valid hard triplets (the constant MIN_TRIPLETS in Algorithm 1),
the size of the groups is halved until |G | = 1.

Complexity: Similar to previous work on triplet training [40],
we can prune the triplets with zero losses (Li = 0), resulting a
valid triplet set T whose size |T | is much smaller than the possible
number N 3 of triplets. Through the proposed Group Hard selection
strategy that chooses one negative sample for each anchor-positive
pair in each group, the number of the candidate triplets for training
is further reduced to |T |/|G |. Furthermore, all the selected triplets
are hard triplets (Li > 0 in Eq. (1)), and the total amount can be
controlled in a suitable range by adjusting the number of groupsG ,
resulting in effective triplet training and higher retrieval accuracy.

3.2 Weak-Orthogonal Quantization
While triplet training with Group Hard selection enables effective
image retrieval, efficient image retrieval is enabled by a novel triplet
quantization model. As each batch used for training the deep neu-
ral networks is comprised of triplets, the proposed quantization
model should be compatible with the triplet training. For the ith
triplet, each image representation z∗i , where ∗ ∈ {a,p,n}, is quan-
tized using a set of M codebooks C∗ = [C∗1 , . . . ,C

∗
M ], where each

codebook C∗m contains K codewords C∗m = [C∗m1, . . . ,C
∗
mK ], and

each codewordC∗mk is a D-dimensional cluster-centroid vector as
in K-means. Corresponding to theM codebooks, we partition the
binary codewords assignment vector b∗i into M 1-of-K indicator
vectorsb∗i = [b

∗
1i ; . . . ;b

∗
Mi ], and each indicator vectorb

∗
mi indicates

which one (and only one) of the K codewords in themth codebook
is used to approximate the ith data point z∗i . To enable knowledge
sharing across the anchors, positive and negative samples in the
triplets, we propose a triplet quantization approach by sharing the
codebooks {C∗m = Cm }Mm=1 across different samples in all triplets.



To mitigate the degeneration issue of K-means, we further propose
a weak orthogonality penalty across the M codebooks, which po-
tentially reduces the redundancy of the multiple codebooks and
improves the compactness of the binary codes. The proposed triplet
quantization model with weak-orthogonal constraint is defined as

Q =

Nt∑
i=1

∑
∗∈{a,p,n }

z∗i − M∑
m=1

Cmb∗mi

2
2
+ γ

M∑
m=1

M∑
m′=1

CT
mCm′ − I

2
F

(3)
where

b∗mi

0 = 1,b∗mi ∈ {0, 1}

K , ∥·∥0 is the ℓ0-norm that simply
counts the number of the vector’s nonzero elements, and γ is the
hyper-parameter that controls the degree of orthogonality. The ℓ0
constraint guarantees that only one codeword in each codebook
can be activated to approximate the input data, which leads to
compact binary codes. The underlying reason of usingM codebooks
instead of single codebook to approximate each input data point is
to further minimize the quantization error, while single codebook
yields significantly lossy compression and large performance drop.

3.3 Deep Triplet Quantization
We enable efficient and effective image retrieval in an end-to-end
architecture by integrating the triplet training procedure (1), triplet
selection module (2) and the weak-orthogonal quantization (3) in a
unified deep triplet quantization (DTQ) model as

min
Θ,C,B∗

L + λQ, (4)

where λ > 0 is a hyper-parameter between the triplet loss L and the
triplet quantization lossQ , andΘ denotes the set of learnable param-
eters of the deep network. Through joint optimization problem (4),
we can learn the binary codes by jointly preserving the similarity
via triplet learning procedure and controlling the quantization error
of binarizing continuous representations to compact binary codes.
A notable advantage of joint optimization is that we can improve
the quantizability of the learned deep representations {z∗i } such
that they can be quantized more effectively by our weak-orthogonal
quantizer (3), yielding more accurate binary codes.

Approximate nearest neighbor (ANN) search by maximum inner-
product similarity is a powerful tool for quantization methods [7].
Given a database of N binary codes {bn }Nn=1, we follow [1, 2] to
adopt Asymmetric Quantizer Distance (AQD) as the metric, which
computes the inner-product similarity between a given query q
and the reconstruction of the database point xn as

AQD (q,xn ) = zTq

( M∑
m=1

Cmbmn

)
, (5)

Given queryq and the deep representation zq , these inner-products
between zq and allM codebooks {Cm }Mm=1 and allK possible values
of bmn can be pre-computed and stored in a query-specificM × K
lookup table, which is used to compute AQD between the query
and all database points, each entailsM table lookups and additions
and is slightly more costly than computing the Hamming distance.

3.4 Learning Algorithm
The DTQ optimization problem in Equation (4) consists of three
sets of variables: deep convolutional neural network parameters

Algorithm 1: Deep Triplet Quantization (DTQ) Training
Input: N training images X = {xi }Ni=1;
Input: Similarity pairs S = {si j }Ni, j=1.
for epoch = 0 toMAX_EPOCH do

Run the model to update {zi }Ni=1 for N training images
if epoch == 0 then

Initialize B andC via Product Quantization [16]
end
Split the N training images to N /|G | groups randomly
T ← ∅

for group д = 0 to N /|G | do
foreach xa ,xp ∈ Gд , s.t sap = 1 do

foreach xn ∈ Gд , s.t san = 0 do
if δ − ∥za − zn ∥22 +

za − zp22 > 0 then
// Triplet < x a, x p, x n > is hard

Tap ← Tap ∪ {< xa ,xp ,xn >}

end
end
// Randomly choose a hard negative sample from Tap

T ← T ∪ rand(Tap)
end

end
for i = 0 to |T |/BATCH_SIZE do

Train the model using the i-th batch of triplets
end
UpdateC and B with Eqn. (7) and Eqn. (8) respectively
if |T | < MIN_TRIPLETS and |G | > 1 then

// Halve the size of the groups

|G | ← ⌊ |G |2 ⌋
end

end
Output: The trained deep neural networks of DTQ.

Θ, shared codebook C = [C1, . . . ,CM ], and binary codes B∗. We
adopt an alternating optimization paradigm [26] which iteratively
updates one variable with the remaining variables fixed.

Learning Θ. The network parameters Θ can be efficiently opti-
mized via standard back-propagation (BP) algorithm. We adopt the
automatic differentiation techniques in TensorFlow.

LearningC.We update codebookC by rewriting Equation (4)
withC as the unknown variables in matrix formulation as follows,

min
C

∑
∗∈{a,p,n }

Z ∗ −CB∗2F + γ CTC − I
2
F
. (6)

We adopt the gradient descent to updateC ,C ← C − η ∂Q (C )
∂C , and

∂Q (C)

∂C
= 2

∑
∗∈{a,p,n }

CB∗B∗T−2
∑

∗∈{a,p,n }

Z ∗B∗T+2γC
(
2CTC − I

)
(7)

where η is a learning rate. We can further speed up computation
by first solving C with γ = 0, which leads to an analytic solution
C =

[∑
∗∈{a,p,n } Z

∗B∗T
] [∑

∗∈{a,p,n } B
∗B∗T

]−1
, then updating C

with this solution as the starting point of gradient descent.



Learning B. As each b∗i is independent on the rest of {b∗i′}i′,i ,
the optimization for B∗ can be decomposed to 3Nt subproblems,

min
b ∗i

z∗i − M∑
m=1

Cmb∗mi

2
s.t.

b∗mi

0 = 1,b∗mi ∈ {0, 1}

K .

(8)

This is essentially a high-order Markov Random Field (MRF) prob-
lem. As the MRF problem is generally NP-hard, we resort to the
Iterated Conditional Modes (ICM) algorithm [39] that solves M
indicators {b∗mi }

M
m=1 alternatively. Specifically, given {b

∗
m′i }m′,m

fixed, we update b∗mi by exhaustively checking all the codewords
in the codebookCm , finding the specific codeword with mimimal
objective in (8), and setting the corresponding entry of b∗mi as 1 and
the rest as 0. The ICM algorithm is guaranteed to converge to local
minima, and can be terminated if maximum iteration is reached.
And the training procedure of DTQ is summarized in Algorithm 1.

4 EXPERIMENTS
We conduct extensive experiments to evaluate the efficacy of the
proposed DTQ approach against several state-of-the-art shallow
and deep hashing methods on three image retrieval benchmark
datasets, NUS-WIDE, CIFAR-10, and MS-COCO. Project codes and
detailed configurationswill be available at https://github.com/thuml.

4.1 Setup
The evaluation is conducted on three widely used image retrieval
benchmark xdatasets: NUS-WIDE, CIFAR-10, and MS-COCO.

NUS-WIDE1 [4] is a public image dataset which contains 269,648
images in 81 ground truth categories. We follow similar experimen-
tal protocols in [1, 2], and randomly sample 5,000 images as query
points, with the remaining images used as the database and ran-
domly sample 10,000 images from the database for training.

CIFAR-102 is a public dataset with 60,000 tiny images in 10
classes. We follow the protocol in [2] to randomly select 100 images
per class as the query set, 500 images per class for training, and the
rest images as the database.

MS-COCO3 [21] is a dataset for image recognition, segmenta-
tion and captioning. The current release contains 82,783 training
images and 40,504 validation images, where each image is labeled
by some of the 80 semantic concepts. We randomly sample 5,000
images as the query points, with the rest used as the database, and
randomly sample 10,000 images from the database for training.

Following standard evaluation protocol as previous work [1, 3,
19, 36, 41], the similarity information for hash function learning
and for ground-truth evaluation is constructed from image labels:
if two images i and j share at least one label, they are similar and
si j = 1, otherwise they are dissimilar and si j = 0. Thoughwe use the
ground truth image labels to construct the similarity information,
the proposed DTQ can learn compact binary codes when only the
similarity information is available, more general than label-based
hashing and quantization methods [1, 2].

1http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm
2http://www.cs.toronto.edu/kriz/cifar.html
3http://mscoco.org

We compare the retrieval performance of DTQ with ten state-
of-the-art hashing methods, including supervised shallow hashing
methods BRE [18], ITQ-CCA [13],KSH [23], SDH [30] and super-
vised deep hashing methods CNNH [36], DNNH [19], DHN [41],
DQN [2], HashNet [3], DVSQ [1]. We evaluate retrieval quality
based on three standard evaluationmetrics: MeanAverage Precision
(MAP), Precision-Recall curves (PR), and Precision curves with
respect to the numbers of top returned samples (P@N). To enable
a direct comparison to the published results, all methods use iden-
tical training and test sets. We follow [1–3] and adopt MAP@5000
for NUS-WIDE dataset, MAP@5000 for MS-COCO dataset, and
MAP@54000 for CIFAR-10 dataset.

Our implementation of DTQ is based on TensorFlow. For shal-
low hashingmethods, we use as image features the 4096-dimensional
DeCAF7 features [6]. For deep hashing methods, we use as input
the original images, and adopt AlexNet [17] as the backbone archi-
tecture. We fine-tune layers conv1–fc7 copied from the AlexNet
model pre-trained on ImageNet and train the last hash layer via
back-propagation. As the last layer is trained from scratch, we set
its learning rate to be 10 times that of the lower layers. We use
mini-batch stochastic gradient descent (SGD) with 0.9 momentum
as the solver, and cross-validate the learning rate from 10−5 to 10−2

with a multiplicative step-size 10
1
2 . We fix K = 256 codewords for

each codebook as [1]. For each point, the binary code for allM code-
books requires B = M log2 K = 8M bits (i.e.M bytes), where we set
M = B/8 as B is a hyper-parameters. We fix the mini-batch size of
triplets as 128 in each iteration and set the initial number of groups
as |G | = 200 for NUS-WIDE andMS-COCO, and |G | = 10 for CIFAR-
10. We select the hyper-parameters of the proposed method DTQ
and all comparison methods using the three-fold cross-validation.

4.2 Results
The MAP results of all methods are listed in Table 1, showing that
the proposed DTQ substantially outperforms all the comparison
methods. Specifically, compared to SDH [30], the best shallow hash-
ing method with deep features as input, DTQ achieves absolute
increases of 11.1%, 33.0% and 20.7% in the average MAP on NUS-
WIDE, CIFAR-10, and MS-COCO respectively. Compared to DVSQ
[1], the state-of-the-art deep quantization method with class labels
as supervised information, DTQ outperforms DVSQ by large mar-
gins of 0.8%, 6.2% and 4.9% in average MAP on the three datasets,
NUS-WIDE, CIFAR-10, and MS-COCO, respectively.

The MAP results reveal several interesting insights. 1) Shallow
hashing methods cannot learn discriminative deep representations
and hash codes through end-to-end framework, which explains
the fact that they are surpassed by deep hashing methods. 2) Deep
quantization methods DQN and DVSQ learn less lossy binary codes
by jointly preserving similarity information and controlling the
quantization error, significantly outperforming pioneering methods
CNNH and DNNH without reducing the quantization error.

The proposed DTQ improves substantially from the state-of-
the-art DVSQ by three important perspectives: 1) DTQ introduces
a novel triplet training strategy to deep quantization framework
for efficient similarity retrieval. It is worth noting that DTQ can
learn compact binary codes when only the similarity information
is available, which is more general than the label-based hashing

https://github.com/thuml
http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm
http://www.cs.toronto.edu/kriz/cifar.html
http://mscoco.org


Table 1: Mean Average Precision (MAP) Results for Different Number of Bits on the Three Benchmark Image Datasets

Method NUS-WIDE CIFAR-10 MS-COCO
8 bits 16 bits 24 bits 32 bits 8 bits 16 bits 24 bits 32 bits 8 bits 16 bits 24 bits 32 bits

ITQ-CCA 0.526 0.575 0.572 0.594 0.315 0.354 0.371 0.414 0.501 0.566 0.563 0.562
BRE 0.550 0.607 0.605 0.608 0.306 0.370 0.428 0.438 0.535 0.592 0.611 0.622
KSH 0.618 0.651 0.672 0.682 0.489 0.524 0.534 0.558 0.492 0.521 0.533 0.534
SDH 0.645 0.688 0.704 0.711 0.356 0.461 0.496 0.520 0.541 0.555 0.560 0.564
CNNH 0.586 0.609 0.628 0.635 0.461 0.476 0.476 0.472 0.505 0.564 0.569 0.574
DNNH 0.638 0.652 0.667 0.687 0.525 0.559 0.566 0.558 0.551 0.593 0.601 0.603
DHN 0.668 0.702 0.713 0.716 0.512 0.568 0.594 0.603 0.607 0.677 0.697 0.701

HashNet 0.613 0.662 0.687 0.699 0.621 0.643 0.660 0.667 0.625 0.687 0.699 0.718
DQN 0.721 0.735 0.747 0.752 0.527 0.551 0.558 0.564 0.649 0.653 0.666 0.685
DVSQ 0.780 0.790 0.792 0.797 0.715 0.727 0.730 0.733 0.704 0.712 0.717 0.720
DTQ 0.795 0.798 0.799 0.801 0.785 0.789 0.790 0.792 0.758 0.760 0.764 0.767
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Figure 2: Precision-recall curves on the NUS-WIDE, CIFAR-10 and MS-COCO datasets with binary codes @ 32 bits.
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Figure 3: Precision@top-N curves on the NUS-WIDE, CIFAR-10 and MS-COCO datasets with binary codes @ 32 bits.

method DVSQ. 2) During the learning of triplet loss, DTQ adopts a
novel triplet mining strategy, Group Hard, that mines appropriate
amount of good triplets for each epoch, resulting in effective triplet
training and better performance. 3)DTQ is the first method to apply
weak-orthogonal quantization during triplet training. And back-
propagating the triplet quantization loss can remarkably enhance
the quantizability of the deep representations.

The retrieval performance in terms of Precision-Recall curves
(PR) and Precision curves with respect to different numbers of

top returned samples (P@N) are shown in Figures 2 and 3, respec-
tively. These metrics are widely used in deploying practical systems.
The proposed DTQ significantly outperforms all the comparison
methods by large margins under these two evaluation metrics. In
particular, DTQ achieves much higher precision at lower recall lev-
els or smaller number of top samples than all compared baselines.
This is very desirable for precision-oriented retrieval, where people
count more on the top-N returned results with a small N . This
justifies the value of our model for practical retrieval systems.



Table 2: Mean Average Precision (MAP) Results of DTQ and Its Variants DTQ-H, DTQ-T, DTQ-2, and DTQ

Method NUS-WIDE CIFAR-10 MS-COCO
8 bits 16 bits 24 bits 32 bits 8 bits 16 bits 24 bits 32 bits 8 bits 16 bits 24 bits 32 bits

DTQ-H 0.753 0.758 0.763 0.769 0.741 0.747 0.751 0.754 0.708 0.714 0.722 0.729
DTQ-T 0.719 0.722 0.727 0.731 0.663 0.670 0.672 0.679 0.714 0.720 0.728 0.734
DTQ-2 0.752 0.757 0.761 0.768 0.718 0.722 0.726 0.731 0.717 0.725 0.733 0.739
DTQ-Q 0.769 0.773 0.777 0.781 0.750 0.761 0.763 0.765 0.721 0.727 0.734 0.740
DTQ-O 0.785 0.787 0.780 0.788 0.771 0.777 0.779 0.781 0.739 0.745 0.750 0.758
DTQ 0.795 0.798 0.799 0.801 0.785 0.789 0.790 0.792 0.758 0.760 0.764 0.767

4.3 Analysis
4.3.1 Ablation Study. We investigate five variants of DTQ: 1)

DTQ-T is the DTQ variant by replacing the triplet loss in (1) with
the widely-used pairwise cross-entropy loss [3, 41]; 2) DTQ-H is
the DTQ variant without Group Hard to mine appropriate amount
of good triplets for each epoch during the learning of the triplet loss
as [19]; 3) DTQ-2 is the two-step variant of DTQ which first learns
the deep representations for all images and then generates compact
binary codes via the weak-orthogonal quantization. 4) DTQ-Q is
the DTQ variant which replaces the proposed Triplet Quantization
to the Product Quantization [16] used in DQN [2]. 5) DTQ-O is
the DTQ variant by removing the weak orthogonality penalty for
redundancy reduction, i.e. γ = 0.

The MAP results for DTQ and it’s five variants with respect to
different code lengths on three benchmark datasets, NUS-WIDE,
CIFAR-10, and MS-COCO are reported in Table 2.

Triplet Loss. DTQ outperforms DTQ-T by very large margins
of 7.4%, 11.8% and 3.8% in the average MAP on the three datasets,
NUS-WIDE, CIFAR-10, and MS-COCO, respectively. DTQ-T uses
the widely-used pairwise cross-entropy loss [3, 41] which achieves
state-of-the-art results on previous similarity retrieval tasks. It is
worth noting that the triplet loss is a learning to rank method, and
tries to bring the anchor and the positive samples closer while also
pushing away the negative samples. The DTQ with triplet loss is
actually more suitable for the similarity retrieval tasks and naturally
gives rise to much better performance than DTQ-T.

Quantizability. Another observation is that by jointly preserv-
ing similarity information in the deep representations of image
triplets as well as controlling the quantization error of compact
binary codes, DTQ outperforms DTQ-2 by 3.9%, 6.4% and 3.4% in
the average MAP on the three datasets, NUS-WIDE, CIFAR-10, and
MS-COCO. This shows that end-to-end quantization can improve
the quantizability of deep feature representations and satisfactorily
yield much more accurate retrieval results.

Triplet Quantization. After replacing the proposed Triplet
Quantization to Product Quantization [16] used in DQN [2], DTQ-Q
yields significantly lossy compression and incur remarkable per-
formance drop of 2.3%, 2.9%, 3.2% in the average MAP on the three
datasets, NUS-WIDE, CIFAR-10, and MS-COCO datasets respec-
tively. This proves that the proposed Triplet Quantization with
weak orthogonality can effectively learn compact binary codes and
enable more effective retrieval than Product Quantization.

Weak-Orthogonal Quantization. Finally, by removing the
weak orthogonality penalty, DTQ-O incurs performance drop of

1.3%, 1.2%, 1.4% in the average MAP on the three datasets, NUS-
WIDE, CIFAR-10, and MS-COCO datasets respectively. This proves
the importance of removing the codebook redundancy and improv-
ing the compactness of binary codes for efficient image retrieval.
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Figure 4: Triplet Loss and MAP curves w.r.t. #iterations.

4.3.2 Triplet Selection. By using the proposed triplet mining
strategy, Group Hard, DTQ outperforms DTQ-H by large margins
of 3.8%, 4.0% and 4.4% in the average MAP on three benchmark
datasets, NUS-WIDE, CIFAR-10, and MS-COCO, respectively. As
shown in Figure 4, without mining the appropriate amount of hard
triplets, the Group All training of triplet loss will quickly stagnate,
leading to suboptimal convergence quality and MAP results. The
proposed triplet mining strategy, Group Hard, randomly samples
proper amount of useful triplets with hard examples from several
randomly partitioned group, resulting in effective training and
faster convergence as well as more accurate retrieval performance.

Table 3: MAP on CIFAR-10 for Different Number of Bits

Method 8 bits 16 bits 24 bits 32 bits
DTQ-online 0.703 0.708 0.710 0.713

DTQ 0.785 0.789 0.790 0.792

Online Selection. Selecting all batch samples as negative is also
known as online triplet selection in the literature. Here we conduct
a new experiment which uses online triplet selection and selects
all hard negative samples in a batch (samples per batch = 192) for
each anchor-positive pair. The results are reported in Table 3. Due
to the low ratio of the valid hard triplets in each batch for triplet
training, DTQ-online (with online triplet selection) fails to achieve
satisfactory retrieval results compared with the proposed DTQ.
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Figure 5: The t-SNE visualizations of deep representations learned byDVSQ,DTQ-2, andDTQonCIFAR-10 dataset respectively.

As online triplet selection cannot achieve satisfactory results, we
adopt offline triplet selection, which selects the valid hard triplets
at the beginning of each epoch. However, the offline strategy may
generate too many candidate triplets and need a huge number of
batches per epoch, leading to hard triplets outdated for training
and potentially wasting most batches of each epoch. To alleviate
the outdated effect of hard triplets in offline selection, we split the
data into specific groups and select hard triplets within each group,
reducing the training triplets from |T | to |T |/|G |.

We conduct an experiment to count the number of outdated hard
triplets during training, shown in Figure 6. By splitting training
data into |G | specific groups, the number of outdated hard triplets
is significantly reduced, leading to much better MAP results than
the original offline triplet selection (i.e. |G | = 1). This validates the
effectiveness of the proposed offline selection strategy, Group Hard.
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Figure 6: (left) mAP and ratio of non-outdated hard triplets
w.r.t. iterations; (right) #groups and #triplets w.r.t. #epochs.

4.3.3 Visualization. We show t-SNE visualization of binary codes
and the illustration of top 10 returned images for better understand-
ing the impressive performance improvement of DTQ.

Visualization of Representations. Figure 5 shows the t-SNE
visualizations [31] of the deep representations learned by DVSQ
[1], DTQ-2, and DTQ on CIFAR-10 dataset. The deep representa-
tions of the proposed DTQ exhibit clear discriminative structures
with data points in different categories well separated, while the
deep representations by DVSQ [1] exhibit relative vague struc-
tures. This validates that by introducing the triplet training to deep
quantization, the deep representations generated by our DTQ are
more discriminative than that generated by DVSQ, enabling more
accurate image retrieval. Also, the deep representations of DTQ
are more discriminative than that of the two-step variant DTQ-2,
showing the efficacy of jointly preserving similarity information

in the deep representations of image triplets and controlling the
quantization error of compact binary codes via back-propagation.
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Figure 7: The top 10 images returned by DVSQ and DTQ.

Illustration of Top 10 Results. Figure 7 illustrates the top 10
returned images of DTQ and the best deep hashing baseline DVSQ
[1] for three query images on the three datasets NUS-WIDE, CIFAR-
10, and MS-COCO, respectively. DTQ yields much more relevant
and user-desired retrieval results than the state-of-the-art method.

5 CONCLUSION
This paper proposed Deep Triplet Quantization (DTQ) for efficient
image retrieval, which introduces a triplet training strategy to deep
quantization framework. Through a novel triplet selection module,
Group Hard, an appropriate number of hard triplets are selected for
effective triplet training and faster convergence. To enable efficient
image retrieval, DTQ can learn compact binary codes by jointly
optimizing a novel triplet quantization loss withweak orthogonality.
Comprehensive experiments justify that DTQ generates compact
binary encoding and yields state-of-the-art retrieval performance
on three benchmark datasets NUS-WIDE, CIFAR-10, andMS-COCO.
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