Masked Image Modeling as Vision Pre-training Methodology, Understanding and Data-scaling Capability

Yue Cao

Microsoft Research Asia

June 2nd, 2022

@ BAAI

LeCun's Cake Analogy

"Pure" Reinforcement Learning (cherry)

The machine predicts a scalar reward given once in a while.

► A few bits for some samples

Supervised Learning (icing)

- The machine predicts a category or a few numbers for each input
- Predicting human-supplied data
- ▶ 10→10,000 bits per sample

Self-Supervised Learning (cake génoise)

- The machine predicts any part of its input for any observed part.
- Predicts future frames in videos
- Millions of bits per sample

Why is it so important?

- Baby learns how the world works primarily by observation
- Unlimited data without annotations could be utilized

Photos courtesy of Emmanuel Dupoux

Credit by Yann LeCun

Pre-training paradigm of NLP

Self-supervised Pre-training with Masked Language Modeling

Pre-training paradigm of CV

Supervised classification on ImageNet-1K as pre-training

Fine-tuning

Semantic Segmentation

Object Detection

Fine-grained Image Classification

Explorations of Self-supervised Learning in Vision

• Self-supervised Pre-training + Fine-tuning

Momentum Contrast for Unsupervised Visual Representation Learning

Kaiming He Haoqi Fan Yuxin Wu Saining Xie Ross Girshick

Facebook AI Research (FAIR)

Code: https://github.com/facebookresearch/moco

2019.11

ΜοϹο

Facebook Al Research • 在7个下游任务上, 自监督预

训练**首次超越**有监督预训练

Discriminative Pre-training 0.01 Task: Distinguish each image • 2014.6 • 2018.5 2020.2 • 2020.6 **BYOL, SwAV** SimCLR **Exemplar CNNs** Memory bank Univ. of Freiburg **UC Berkeley** Google Brain DeepMind, FAIR 2019.11 2020.6 2020.11 2018.12 Deep metric PIC MoCo SimSiam, PixPro transfer **MSRA** FAIR, MSRA **MSRA** FAIR

Image 1

Image 2

Image 3

Generative Pre-training

Task: Predict the masked area

9	2016.4	2018.7			2021.6	• 2021.10	
	Context Encoder UC Berkeley	Contrastive Pre DeepMind/UC	dictive Coding Berkeley	J	BEIT MSRA	MAE FAIR	
			2020.6	202	0.10	2021.11	
			iGPT	ViT		SimMIM	
			OpenAl	Googl	e Brain	MSRA	

Masked Image Modeling

- Could MIM be simple but effective?
- How and where does MIM pretraining work?
- Could MIM benefit from larger-scale data?

Task: Predict the masked area

Masked Image Modeling

- Could MIM be simple but effective?
 - SimMIM: A Simple Framework for Masked Image Modeling, CVPR 2022
- How and where does MIM work?
 - Revealing the Dark Secrets of Masked Image Modeling, Arxiv 2022
- Could MIM benefit from larger-scale data?
 - On Data Scaling in Masked Image Modeling, Arxiv 2022

SimMIM: A Simple Framework on MIM

SimMIM: A Simple Framework on MIM

- (a) Masking strategy: Random masking with relatively large patch size (e.g., 32x32)
- (b) **Prediction heads**: An extremely lightweight prediction head (e.g., a linear layer)
- (c) **Prediction targets**: A simple raw pixel regression task
- (d) Encoder architectures: ViT, Swin and ResNet could all benefit from SimMIM

(a) Masking strategy (b) Prediction heads Prediction targets (C) Ablation: Masking Strategy Encoder types (d)

(32)

(16)

(8)

(16)

(32)

•	A simple random	masking	works	well
---	-----------------	---------	-------	------

- Large patch size/High mask rate matters
 - Visual signals are redundant spatially and exhibit strong locality

•		_	
	16/32	0.8	82.4/82.5
	4/8/16/32	0.4	81.9/82.0/82.4/82.9
	4/8/16/32	0.6	82.0/82.1/82.7/82.8
random	4/8/16/32	0.8	82.1/82.4/82.8/82.4
	64	0.1	82.6
	64	0.2	82.6
	32	0.1	82.7
	32	0.2	82.8
	32	0.3	82.8
	32	0.4	82.9
random	32	0.5	83.0
	32	0.6	82.8
	32	0.7	82.7
	32	0.8	82.4
	32	0.9	82.4
			-

(a) Masking strategy
(b) Prediction heads
(c) Prediction targets
(d) Encoder types

Ablation: Prediction Heads

Head	#params	Training costs	Top-1 acc (%)
Linear	89.9M	$1 \times$	82.8
2-layer MLP	90.9M	$1.2 \times$	82.8
inverse Swin-T	115.2M	$1.7 \times$	82.4
inverse Swin-B	174.8M	2.3 imes	82.5

• An extremely **lightweight prediction head** (e.g., a linear layer) achieves similarly or slightly better performance than that of heavier prediction heads

(a) Masking strategy(b) Prediction heads(c) Prediction targets(d) Encoder types

Ablation: Prediction Targets

Loss	Pred. Resolution	Top-1 acc (%)							
Classification									
8-bin	192^{2}	82.7							
8-bin	48^{2}	82.7							
256-bin	192^{2}	N/A							
256-bin	48^{2}	82.3							
iGPT cluster	192^{2}	N/A							
iGPT cluster	48^{2}	82.4							
BEiT	-	82.7							
	Regression								
ℓ_2	192^{2}	82.7							
smooth- ℓ_1	192^{2}	82.7							
ℓ_1	192^{2}	82.8							
ℓ_1	48^{2}	82.7							
ℓ_1	6^2	82.3							

Table 5. Ablation on different prediction targets.

- A **simple raw pixel regression task** performs no worse than the specialized classification approaches, such as tokenization (BEiT), clustering (iGPT), or discretization (ViT)
- The visual signal is continuous in nature

Ablation: Encoder

(a) Masking strategy(b) Prediction heads(c) Prediction targets(d) Encoder types

Mathada	Input	Fine-tuning	Linear eval	Pre-training
wiethous	Size	Top-1 acc (%)	Top-1 acc (%)	costs
Sup. baseline [46]	$ 224^2 $	81.8	-	-
DINO [5]	224^{2}	82.8	78.2	2.0 imes
MoCo v3 [9]	224^{2}	83.2	76.7	1.8 imes
ViT [15]	384^{2}	79.9	-	${\sim}4.0{\times}$
BEiT [1]	224^{2}	83.2 +0.6	56.7	$1.5 \times^{\dagger}$
Ours	224^{2}	83.8	56.7	$1.0 \times$

ResNet-50x4	Input Size	Fine-tuning top-1 acc		
Sup. baseline	224	80.7 <mark>+0.9</mark>		
Ours	224	81.6		

Table 6. System-level comparison using ViT-B as the encoder. Training costs are counted in relative to our approach. [†] BEiT requires an additional stage to pre-train dVAE, which is not counted.

• ViT, Swin and ResNet could all benefit from SimMIM

System-level Comparison

Methods	Pre-train	Fine-tune	Backbone	Top-1 acc (%) Param
Sup.	192^{2}	224^{2}	Swin-B	83.3	88M
Sup.	192^{2}	224^{2}	Swin-L	83.5	197M
Sup.	192^{2}	224^{2}	SwinV2-H	83.3	658M
Ours	192^{2}	224^{2}	Swin-B	84.0 +C	.7 88M
Ours	192^{2}	224^{2}	Swin-L	85.4 +1	9197M
Ours	192^{2}	224^{2}	SwinV2-H	85.7 +2	4 658M
Ours	192^{2}	512^{2}	SwinV2-H	87.1	658M
Ours	192^{2}	640^{2}	SwinV2-G	90.2	3.0B

	S	up.	Ours			
Backbone	COCO	ADE20K	COCO	ADE20K		
	mAP ^{box}	mIoU	mAP ^{box}	mIoU		
Swin-B	50.2	50.4	52.3 +2	.1 52.8 +2.4		
Swin-L	50.9	50.0	53.8 +2	.9 53.5 +3.5		
SwinV2-H	50.2	49.8	54.4 +4	2 54.2 +4.4		

Table 7. Scaling experiments with Swin Transformer as backbone architectures. All our models are pre-trained with input of 192^2 . Different to other models, Swin-G is trained on a privately collected ImageNet-22K-ext dataset, with details described in [33].

Table 12. Scaling experiments with Swin on COCO and ADE20K.

Figure 3. (a) *AvgDist* (averaged distance of masked pixels to the nearest visible pixels) w.r.t. different masking ratios using different masking strategies and different masked patch sizes; (b) fine-tuning performance (top-1 accuracy) w.r.t. *AvgDist*.

Visualizations

Masked Image Modeling

- Could MIM be simple but effective?
 - SimMIM: A Simple Framework for Masked Image Modeling, CVPR 2022
- How and where does MIM work?
 - Revealing the Dark Secrets of Masked Image Modeling, Arxiv 2022
- Could MIM benefit from larger-scale data?
 - On Data Scaling in Masked Image Modeling, Arxiv 2022

Understanding MIM

- Visualizations
 - Local attention or global attention?
 - Diverse attention heads or not?
 - Do features are different across layers?
- Experiments
 - Semantic understanding tasks
 - Geometric and motion tasks
 - Combined tasks

Local Attention v.s. Global Attention (ViT-B)

Local Attention v.s. Global Attention (Swin-B)

Could MIM benefit large-kernel ConvNets?

						Pos	se Estimati	ion
backbon	backbone		re-train Image			COCO	COCO	Crowd-
					val	test	Pose	
RepLKNet-	-31B 1K-SU	JP w/ Reparam.		83.5		74.6	73.9	70.2
RepLKNet-	-31B 1K-MI	M w/o Reparam.		83.3		76.5 <mark>+1</mark> .	9 75.8	72.4

Diverse attention heads or not? (ViT-B)

Diverse attention heads or not? (Swin-B)

Less diversity on attention heads would harm the downstream performance.

1.0 1.0 0.9 0.9 0.8 0.8 ViT-B 0.7 0.7 0.6 0.6 0.5 0.5 (a) Supervised (DeiT) (c) SimMIM 1.0 1.0 0.9 0.9 0.8 0.8 0.7 0.7 Swin-B 0.6 0.6 0.5 0.5 0.4 0.4 0.3 0.3 (b) SimMIM (a) Supervised

The difference on features across layers (via CKA)

Understanding MIM

- Visualizations
 - Local attention or global attention?
 - Diverse attention heads or not?
 - Do features are different across layers?
- Experiments
 - Semantic understanding tasks
 - Geometric and motion tasks
 - Combined tasks

Understanding MIM : An Experimental Perspective

Semantic Understanding Tasks

nre_train	Conc	ept Ge	enerali	zation	(CoG)	I	Kornlith e	et al's 12	2 datasets	(K12)		iNat18
pre-train	L_1	L_2	L_3	L_4	L_5	Food	Birdsna	p Cars	Aircraft	Averag	ge (7)	matro
1K-SUP	79.4	76.2	72.7	72.5	68.4	93.2	81.8	88.6	83.0	89	.7	77.7
1K-MIM	79.6	77.1	73.6	73.0	69.1	94.2	83.7	89.2	83.5	86.	.1	79.6
					ì	1						
Methods	$F_{000}H_{01}$	Birdsnan	dh- V	utanford Cars	FGVC Aircraft	Oxford Pets	Caltech101	Flowers102	DTD	SUN397	CIFAR10	CIFAR100
1K-SUP	93.2	81.	7 8	8.6	83.0	95.9	91.9	97.7	80.3	72.3	99.1	91.0
1K-MIM	94.2	83.	7 8	9.2	83.5	90.9	85.5	91.4	73.4	70.8	99.2	91.4

Understanding MIM : An Experimental Perspective

Geometric and Motion Tasks

		Po	se Estimat	ion	Depth E	stimation	Video Object Tracking		
backbone	pre-train	COCO val	COCO test	Crowd- Pose	NYUv2	KITTI	GOT10k test	Track- Net	LaSOT
	1K-SUP	75.2	74.5	70.7	0.352	2.313	70.1	81.5	69.4
SwinV2-B	22K-SUP	75.9	75.1	72.2	0.335	2.240	69.9	81.0	67.8
	1K-MIM	77.6	2.4 76.7	74.9	0.304	2.050	70.8	82.0	70.0
SwinV2 I	22K-SUP	76.5	75.7	72.7	0.334	2.150	71.1	81.5	69.2
Swiii v 2-L	1K-MIM	78.1 ₊₀	.9 77.2	75.5	0.287 _{+0.0}	₀₄₃ 1.966	72.9	82.5	70.7 _{+0.6}
Representative methods		HI	RFormer ['	79]	BinsFor	mer [50]	Mix	Former [12]
		77.2	76.2	72.5	0.330	2.098	75.6	83.9	70.1

Understanding MIM : An Experimental Perspective

Combined Tasks: object detection & semantic segmentation

Masked Image Modeling

- Could MIM be simple but effective?
 - SimMIM: A Simple Framework for Masked Image Modeling, CVPR 2022
- How and where does MIM work?
 - Revealing the Dark Secrets of Masked Image Modeling, Arxiv 2022
- Could MIM benefit from larger-scale data?
 - On Data Scaling in Masked Image Modeling, Arxiv 2022

Data Scaling of MIM: Setup

Model	Base	Depth	Head	Window Size		Backbone
	Channel	Deptii	Titau	pre-train	fine-tune	Params
SwinV2-S	96	$\{2, 2, 18, 2\}$	{3, 6, 12, 24}	12	14	49M
SwinV2-B	128	$\{2, 2, 18, 2\}$	{4, 8, 16, 32}	12	14	87M
SwinV2-L	192	$\{2, 2, 18, 2\}$	$\{6, 12, 24, 48\}$	12	14	195M
SwinV2-H	352	$\{2, 2, 18, 2\}$	{11, 22, 44, 88}	12	14	655M
SwinV2-G	448	$\{2, 2, 18, 2\}$	{14, 28, 56, 112}	12	14	1061M

Architecture Specifications

	IN1K (10%)	IN1K (20%)	IN1K (50%)	IN100	IN1K(100%)	IN22K(100%)
#Classes	1×10^3	1×10^3	1×10^3	1×10^2	1×10^3	2.18×10^4
#Images	1.28×10^5	2.56×10^5	6.41×10^5	1.27×10^5	1.28×10^{6}	1.42×10^7

Dataset Specifications

Data Scaling of MIM: Experiments

Masked image modeling remains demanding for large datasets

Data Scaling of MIM: Experiments

- Training length matters: less overfitting with 125k iterations
- Large models can benefit from more data at a longer training length

Data Scaling of MIM: Experiments

- This observation is kept across tasks
 - COCO Object Det. & iNaturalist 2018 Cls. & ADE-20K Semantic Seg.

Data Scaling of MIM: Correlation Analysis

The validation loss is a good proxy metric of the fine-tuning performance

Data Scaling of MIM: Visualizations

Training Set

Validation Set

Takeaway

- Approach: A Simple but effective MIM framework (SimMIM)
- Understanding: How and where MIM works
- Data scaling: MIM could still benefit from larger dataset
- -> Task convergence between CV and NLP

Thanks All! Q & A